在做GMAT數(shù)學(xué)題的時(shí)候,會(huì)用到很多不同知識點(diǎn),而這些知識點(diǎn)又是零散的,所以需要人工總結(jié)起來,以便于我們更快捷地進(jìn)行GMAT復(fù)習(xí),小編為大家總結(jié)了GMAT數(shù)學(xué)題的一些典型做法,希望對大家有所幫助。
一些概念
(1)獨(dú)立事件:independent event
A,B共同發(fā)生的概率=A發(fā)生發(fā)生的概率*B發(fā)生的概率
互斥事件:mutual exclusive event
A發(fā)生的概率+B發(fā)生的概率=A or B發(fā)生的概率
(2)標(biāo)準(zhǔn)差:
== 標(biāo)準(zhǔn)差
項(xiàng)數(shù)標(biāo)準(zhǔn)差,若各項(xiàng)同時(shí)增加或減少某數(shù),例如加5,則標(biāo)準(zhǔn)差不變
項(xiàng)數(shù)標(biāo)準(zhǔn)差,若各項(xiàng)同時(shí)增加或減少某比例,例如5%,則標(biāo)準(zhǔn)差會(huì)等比增加或減少
公理:兩個(gè)數(shù)的乘積=其大公約數(shù)*小公倍數(shù)
(3)區(qū)分概念單詞:
Quadrilateral 四邊形
Parallelogram 平行四邊形
(4)余數(shù)的算法
余數(shù)的計(jì)算:
1. 余數(shù)可以加減:(M+N) mod q=((M mod q)+(N mod q)) mod q
2. 余數(shù)可以相乘:M*N除以q的余數(shù),就等于M除以q的余數(shù) 乘以 N除以q的余數(shù),再求余數(shù):M*N mod q=(M mod q)*(N mod q) mod q
3. N^m 除以q的余數(shù):先求N除以9的余數(shù),然后相乘后再求余數(shù):
M^n mod q =(M mod q)^n mod q
只要我們盡量把計(jì)算中的余數(shù)湊成與1相關(guān)的乘式
(5)等比數(shù)列
通項(xiàng):An=A1*q^(n-1)
求和:S=A1*(1-q^n) /(1-q)
(6)等差數(shù)列
通項(xiàng):An=A1+(n-1)d
求和:S=(A1+An)*n/2
OG
OG12-81
Amount of Bacteria Present
Time Amount
1:00 P.M. 10.0 grams
4:00 P.M. x grams
7:00 P.M. 14.4 grams
81. Data for a certain biology experiment are given int he table above. If the amount of bacteria present increased by the same factor(以相同倍數(shù)成倍數(shù)增長) during each of the two 3-hour periods shown, how many grams of bacteria were present at 4:00 P.M. ?
(A) 12.0
(B) 12.1
(C) 12.2
(D) 12.3
(E) 12.4
OG12-106
106. When positive integer x is divided by positive integer y,the remainder is 9. If x/y= 96.12, what is the value of y ? X=96Y+0.12Y(0.12Y即為余數(shù))
(A) 96
(B) 75
(C) 48
(D) 25
(E) 12
OG12-73
73. If m is an integer, is m odd?
(1)m/2 is not an even integer. 不是偶數(shù),不一定就是奇數(shù) 可能是小數(shù)
(2) m – 3 is an even integer.